WellSpan Home

Unusual Cancers of Childhood Treatment (PDQ®): Treatment - Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

General Information About Unusual Cancers of Childhood


Cancer in children and adolescents is rare, although the overall incidence of childhood cancer has been slowly increasing since 1975.[1] Referral to medical centers with multidisciplinary teams of cancer specialists experienced in treating cancers that occur in childhood and adolescence should be considered for children and adolescents with cancer. This multidisciplinary team approach incorporates the skills of the primary care physician, pediatric surgeons, radiation oncologists, pediatric medical oncologists/hematologists, rehabilitation specialists, pediatric nurse specialists, social workers, and others to ensure that children receive treatment, supportive care, and rehabilitation that will achieve optimal survival and quality of life. (Refer to the PDQ Supportive and Palliative Care summaries for specific information about supportive care for children and adolescents with cancer.)

Guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer have been outlined by the American Academy of Pediatrics.[2] At these pediatric cancer centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate in these trials is offered to most patients/families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with therapy that is currently accepted as standard. Most of the progress made in identifying curative therapy for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2010, childhood cancer mortality decreased by more than 50%.[3] Childhood and adolescent cancer survivors require close monitoring because cancer therapy side effects may persist or develop months or years after treatment. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.)

Childhood cancer is a rare disease with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[4] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 persons. Therefore, all pediatric cancers are considered rare. The designation of a rare tumor is not uniform among pediatric and adult groups. Adult rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people and are estimated to account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[5,6] Also, the designation of a pediatric rare tumor is not uniform among international groups, as follows:

  • The Italian cooperative project on rare pediatric tumors (Tumori Rari in Eta Pediatrica [TREP]) defines a pediatric rare tumor as one with an incidence of less than two cases per 1 million population per year and is not included in other clinical trials.[7]
  • The Children's Oncology Group (COG) has opted to define rare pediatric cancers as those listed in the International Classification of Childhood Cancer subgroup XI, which includes thyroid cancer, melanoma and nonmelanoma skin cancers, and multiple types of carcinomas (e.g., adrenocortical carcinoma, nasopharyngeal carcinoma, and most adult-type carcinomas such as breast cancer, colorectal cancer, etc.).[8] These diagnoses account for about 4% of cancers diagnosed in children aged 0 to 14 years, compared with about 20% of cancers diagnosed in adolescents aged 15 to 19 years (refer to Figures 1 and 2).[9] Most cancers within subgroup XI are either melanomas or thyroid cancer, with the remaining subgroup XI cancer types accounting for only 1.3% of cancers in children aged 0 to 14 years and 5.3% of cancers in adolescents aged 15 to 19 years.

These rare cancers are extremely challenging to study because of the low incidence of patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the lack of clinical trials for adolescents with rare cancers such as melanoma.

Pie chart showing age-adjusted and age-specific cancer incidence rates for patients aged 0-14 years (SEER 2009-2012).
Figure 1. Age-adjusted and age-specific (0–14 years) Surveillance, Epidemiology, and End Results (SEER) cancer incidence rates from 2009 to 2012 by International Classification of Childhood Cancer group and subgroup and age at diagnosis, including myelodysplastic syndrome and group III benign brain/central nervous system tumors for all races, males, and females. Pie chart showing age-adjusted and age-specific cancer incidence rates for patients aged 15-19 years (SEER 2009-2012).
Figure 2. Age-adjusted and age-specific (15–19 years) Surveillance, Epidemiology, and End Results (SEER) cancer incidence rates from 2009 to 2012 by International Classification of Childhood Cancer group and subgroup and age at diagnosis, including myelodysplastic syndrome and group III benign brain/central nervous system tumors for all races, males, and females.

Some investigators have used large databases, such as the Surveillance, Epidemiology, and End Results (SEER) and the National Cancer Database, to gain more insight into these rare childhood cancers. However, these database studies are limited. Several initiatives to study rare pediatric cancers have been developed by the COG and other international groups, including the International Society of Paediatric Oncology (Société Internationale D'Oncologie Pédiatrique [SIOP]). The Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) rare tumor project was founded in Germany in 2006.[10] The TREP was launched in 2000,[7] and the Polish Pediatric Rare Tumor Study Group was launched in 2002.[11] In Europe, the rare tumor studies groups from France, Germany, Italy, Poland, and the United Kingdom have joined in the European Cooperative study Group on Pediatric Rare Tumors (EXPeRT), focusing on international collaboration and analyses of specific rare tumor entities.[12] Within the COG, efforts have concentrated on increasing accrual to COG registries (Project Every Child) and tumor banking protocols, developing single-arm clinical trials, and increasing cooperation with adult cooperative group trials.[13] The accomplishments and challenges of this initiative have been described in detail.[8,14]

The tumors discussed in this summary are very diverse; they are arranged in descending anatomic order, from infrequent tumors of the head and neck to rare tumors of the urogenital tract and skin. All of these cancers are rare enough that most pediatric hospitals might see less than a handful of some histologies in several years. The majority of the histologies described here occur more frequently in adults. Information about these tumors may also be found in sources relevant to adults with cancer.


  1. Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010.
  2. Corrigan JJ, Feig SA; American Academy of Pediatrics: Guidelines for pediatric cancer centers. Pediatrics 113 (6): 1833-5, 2004.
  3. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014.
  4. Ward E, DeSantis C, Robbins A, et al.: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64 (2): 83-103, 2014 Mar-Apr.
  5. Gatta G, Capocaccia R, Botta L, et al.: Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol 18 (8): 1022-1039, 2017.
  6. DeSantis CE, Kramer JL, Jemal A: The burden of rare cancers in the United States. CA Cancer J Clin 67 (4): 261-272, 2017.
  7. Ferrari A, Bisogno G, De Salvo GL, et al.: The challenge of very rare tumours in childhood: the Italian TREP project. Eur J Cancer 43 (4): 654-9, 2007.
  8. Pappo AS, Krailo M, Chen Z, et al.: Infrequent tumor initiative of the Children's Oncology Group: initial lessons learned and their impact on future plans. J Clin Oncol 28 (33): 5011-6, 2010.
  9. Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2012. Bethesda, Md: National Cancer Institute, 2015. Also available online. Last accessed August 13, 2018.
  10. Brecht IB, Graf N, Schweinitz D, et al.: Networking for children and adolescents with very rare tumors: foundation of the GPOH Pediatric Rare Tumor Group. Klin Padiatr 221 (3): 181-5, 2009 May-Jun.
  11. Balcerska A, Godzinski J, Bien E, et al.: [Rare tumours--are they really rare in the Polish children population?]. Przegl Lek 61 (Suppl 2): 57-61, 2004.
  12. Bisogno G, Ferrari A, Bien E, et al.: Rare cancers in children - The EXPeRT Initiative: a report from the European Cooperative Study Group on Pediatric Rare Tumors. Klin Padiatr 224 (6): 416-20, 2012.
  13. Musselman JR, Spector LG, Krailo MD, et al.: The Children's Oncology Group Childhood Cancer Research Network (CCRN): case catchment in the United States. Cancer 120 (19): 3007-15, 2014.
  14. Pappo AS, Furman WL, Schultz KA, et al.: Rare Tumors in Children: Progress Through Collaboration. J Clin Oncol 33 (27): 3047-54, 2015.

Head and Neck Cancers

Childhood sarcomas often occur in the head and neck area and they are described in other sections. Unusual pediatric head and neck cancers include the following:

  • Nasopharyngeal carcinoma.
  • Esthesioneuroblastoma.
  • Thyroid tumors.
  • Oral cavity cancer.
  • Salivary gland tumors.
  • Laryngeal carcinoma and papillomatosis.
  • Midline tract carcinoma involving the NUT gene.

It must be emphasized that these cancers are seen very infrequently in patients younger than 15 years, and most of the evidence is derived from small case series or cohorts combining pediatric and adult patients.

Nasopharyngeal Carcinoma


Nasopharyngeal carcinoma arises in the lining of the nasal cavity and pharynx, and it accounts for about one-third of all cancers of the upper airways in children.[1,2]

Nasopharyngeal carcinoma is very uncommon in children younger than 10 years but increases in incidence to 0.8 cases per 1 million per year in children aged 10 to 14 years and 1.3 cases per million per year in children aged 15 to 19 years.[3,4,5]

The incidence of nasopharyngeal carcinoma is characterized by racial and geographic variations, with an endemic distribution among well-defined ethnic groups, such as inhabitants of some areas in North Africa and the Mediterranean basin, and, particularly, Southeast Asia. In the United States, the incidence of nasopharyngeal carcinoma is higher in black children and adolescents younger than 20 years.[4,5]

Risk Factors

Nasopharyngeal carcinoma is strongly associated with Epstein-Barr virus (EBV) infection. In addition to the serological evidence of infection in more than 98% of patients, EBV DNA is present as a monoclonal episome in the nasopharyngeal carcinoma cells, and tumor cells can have EBV antigens on their cell surface.[6] The circulating levels of EBV DNA and serologic documentation of EBV infection may aid in the diagnosis.[7] Specific HLA subtypes, such as the HLA A2Bsin2 haplotype, are associated with a higher risk of nasopharyngeal carcinoma.[1]


Three histologic subtypes of nasopharyngeal carcinoma are recognized by the World Health Organization (WHO):

  • Type I—keratinizing squamous cell carcinoma.
  • Type II—nonkeratinizing squamous cell carcinoma. Type II is distinguished by the presence of lymphoid infiltration as type IIa or IIb.
  • Type III—undifferentiated carcinoma. Type III is distinguished by the presence of lymphoid infiltration as type IIIa or IIIb.

Children with nasopharyngeal carcinoma are more likely to have WHO type II or type III disease.[4,5]

Clinical Presentation

Signs and symptoms of nasopharyngeal carcinoma include the following:[2,8]

  • Cervical lymphadenopathy.
  • Nosebleeds.
  • Nasal congestion and obstruction.
  • Headache.
  • Otalgia.
  • Otitis media.

Given the rich lymphatic drainage of the nasopharynx, bilateral cervical lymphadenopathy is often the first sign of disease. The tumor spreads locally to adjacent areas of the oropharynx and may invade the skull base, resulting in cranial nerve palsy or difficulty with movements of the jaw (trismus).

Distant metastatic sites may include the bones, lungs, and liver.

Diagnostic and Staging Evaluation

Diagnostic tests will determine the extent of the primary tumor and the presence of metastases. Visualization of the nasopharynx by an otolaryngologist using nasal endoscopy and magnetic resonance imaging of the head and neck can be used to determine the extent of the primary tumor.

A diagnosis can be made from a biopsy of the primary tumor or enlarged lymph nodes of the neck. Nasopharyngeal carcinomas must be distinguished from all other cancers that can present with enlarged lymph nodes and from other types of cancer in the head and neck area. Thus, diseases such as thyroid cancer, rhabdomyosarcoma, non-Hodgkin lymphoma including Burkitt lymphoma, and Hodgkin lymphoma must be considered, as well as benign conditions such as nasal angiofibroma, which usually presents with epistaxis in adolescent males, infectious lymphadenitis, and Rosai-Dorfman disease.

Evaluation of the